{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Training\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Building and compiling a model" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%%capture\n", "import h5py\n", "from chimeranet.models import ChimeraPPModel\n", "\n", "# probe shape of dataset and set embedding dimension\n", "dataset_path = 'example-dataset-train.hdf5'\n", "with h5py.File(dataset_path, 'r') as f:\n", " _, T, F, C = f['y/embedding'].shape\n", "D = 20\n", "cm = ChimeraPPModel(T, F, C, D)\n", "\n", "# build_model returns Keras' Model object\n", "model = cm.build_model()\n", "model.compile(\n", " 'rmsprop',\n", " loss={\n", " 'embedding': cm.loss_deepclustering(),\n", " 'mask': cm.loss_mask()\n", " },\n", " loss_weights={\n", " 'embedding': 0.9,\n", " 'mask': 0.1\n", " }\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Training a model" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train on 160 samples, validate on 160 samples\n", "Epoch 1/10\n", "160/160 [==============================] - 261s 2s/step - loss: 18381.2736 - embedding_loss: 18457.8914 - mask_loss: 17691.7186 - val_loss: 12940.3148 - val_embedding_loss: 12466.7975 - val_mask_loss: 17201.9725\n", "Epoch 2/10\n", "160/160 [==============================] - 258s 2s/step - loss: 12468.0131 - embedding_loss: 12140.8994 - mask_loss: 15412.0373 - val_loss: 11921.1551 - val_embedding_loss: 11286.8416 - val_mask_loss: 17629.9813\n", "Epoch 3/10\n", "160/160 [==============================] - 266s 2s/step - loss: 12008.5932 - embedding_loss: 11784.1303 - mask_loss: 14028.7604 - val_loss: 11863.6486 - val_embedding_loss: 11170.0996 - val_mask_loss: 18105.5883\n", "Epoch 4/10\n", "160/160 [==============================] - 266s 2s/step - loss: 12022.4951 - embedding_loss: 11823.9797 - mask_loss: 13809.1371 - val_loss: 11875.8588 - val_embedding_loss: 11263.6596 - val_mask_loss: 17385.6521\n", "Epoch 5/10\n", "160/160 [==============================] - 266s 2s/step - loss: 11840.2252 - embedding_loss: 11682.9516 - mask_loss: 13255.6879 - val_loss: 11862.4658 - val_embedding_loss: 11327.9975 - val_mask_loss: 16672.6859\n", "Epoch 6/10\n", "160/160 [==============================] - 273s 2s/step - loss: 11768.4652 - embedding_loss: 11728.4332 - mask_loss: 12128.7551 - val_loss: 11538.6459 - val_embedding_loss: 11066.1010 - val_mask_loss: 15791.5525\n", "Epoch 7/10\n", "160/160 [==============================] - 270s 2s/step - loss: 11755.5100 - embedding_loss: 11649.7219 - mask_loss: 12707.6035 - val_loss: 11632.5807 - val_embedding_loss: 11140.6088 - val_mask_loss: 16060.3297\n", "Epoch 8/10\n", "160/160 [==============================] - 276s 2s/step - loss: 11816.1187 - embedding_loss: 11642.1570 - mask_loss: 13381.7742 - val_loss: 11814.3582 - val_embedding_loss: 11381.6398 - val_mask_loss: 15708.8264\n", "Epoch 9/10\n", "160/160 [==============================] - 270s 2s/step - loss: 11801.6576 - embedding_loss: 11660.4234 - mask_loss: 13072.7674 - val_loss: 11853.9027 - val_embedding_loss: 11215.5012 - val_mask_loss: 17599.5209\n", "Epoch 10/10\n", "160/160 [==============================] - 283s 2s/step - loss: 11742.7662 - embedding_loss: 11698.4328 - mask_loss: 12141.7742 - val_loss: 11385.7367 - val_embedding_loss: 11052.1635 - val_mask_loss: 14387.8969\n" ] } ], "source": [ "# load train and validation data\n", "dataset_validation_path = 'example-dataset-validation.hdf5'\n", "with h5py.File(dataset_path, 'r') as f:\n", " x_train = f['x'][()]\n", " y_train = {'mask': f['y/mask'][()], 'embedding': f['y/embedding'][()]}\n", "with h5py.File(dataset_validation_path, 'r') as f:\n", " x_validation = f['x'][()]\n", " y_validation = {'mask': f['y/mask'][()], 'embedding': f['y/embedding'][()]}\n", "\n", "# train model by model.fit function\n", "model.fit(\n", " x=x_train,\n", " y=y_train,\n", " validation_data=(x_validation, y_validation),\n", " batch_size=32,\n", " epochs=10\n", ")\n", "# save the model\n", "model_path = 'example-model.hdf5'\n", "model.save(model_path)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }